Skip to main content

Advanced Algorithms (Graph Algorithms) in Java

advanced-algorithms-in-java

Online Courses Udemy - Advanced Algorithms (Graph Algorithms) in Java, Graph Algorithms, Breadth-First Search, Depth-First Search, Shortest Path, Arbitrage and Strongly Connected Components
  • Bestseller
  • Created by Holczer Balazs
  • English [Auto], Spanish [Auto]

This course is about advanced algorithms (graph algorithms) focusing on graph traversal, shortest path problems, spanning trees and maximum flow problems and a lots of its applications from Google Web Crawler to taking advantage of stock market arbitrage situations. 
Section 1 - Graphs Theory Basics:
what is a G(V,E) graph
adjacency matrix representation
adjacency list representation
Section 2 - Graph Traversal (Breadth-First Search)
what is breadth-first search?
how to use BFS for WebCrawling in search engines?
Section 3 - Graph Traversal (Depth-First Search)
what is depth-first search?
how to use recursion to implement DFS
applications of DFS such as topological ordering and cycle detection
find way out of a maze with DFS
Section 4 - Topological Ordering
what is topological ordering (topological sort)
directed acyclic graphs (DAGs)
DAG shortest path and longest path
critical path methods and project management
Section 5 - Cycle Detection
what are cycles in a graph?
forward edges and backward edges
cycle detection algorithms (Tarjan's algorithm with DFS)
Section 6 - Dijkstra's Shortest Path Algorithm
what is a shortest path in a G(V,E) graph
Dijkstra's shortest path algorithm
Section 7 - Bellman-Ford Shortest Path Algorithm
Bellman-Ford algorithm
how to handle negative cycles
finding arbitrage opportunities on the FOREX
Section 8: - Spanning Trees (Kruskal and Prim's Algorithms)
what are spanning trees?
union find data structures
Kruskal's algorithm
Prim's algorithm
Section 9 - Strongly Connected Components (SCCs)
what are strongly connected components
Kosaraju's algorithm
Tarjan's algorithm
Section 10 - Maximum Flow Problem
the famous maximum flow problem
how to reduce most of the hard problems to maximum flow problem
Ford-Fulkerson algorithm
bipartite matching problem
Section 9 - Travelling Salesman Problem and Hamiltonian Cycles:
travelling salesman problem (TSP)
how to deal with NP-hard problems
what are meta-heuristics
Section 10 - Eulerian Paths
eulerian paths and eulerian cycles
Hierholzer algorithm and the Chinese Postman Problem
The course is going to take approximately 11 hours to completely but I highly suggest you typing these algorithms out several times in order to get a good grasp of it. You can download the source code of the whole course at the last lecture. 
You should definitely take this course if you are interested in advanced topics concerning algorithms. There are a bunch of fields where these methods can be used: from software engineering to scientific research.
Thanks for joining the course, let's get started!
Who this course is for:

This course is meant for everyone from scientists to software developers who want to get closer to algorithmic thinking in the main

100% Off Udemy Coupon . Free Udemy Courses . Online Classes
Comment Policy: Please write your comments that match the topic of this page post. Comments containing links will not be displayed until they are approved.
Open Comments
Close Comment